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bstract

Collections of batteries are used to supply energy to a variety of applications. By utilizing the energy in such a collection efficiently, we can
mprove the lifetime over which energy can be supplied to the application. We say that the discharge of a collection of batteries is coordinated
hen, at the end of discharge, the difference in the remaining capacity of individual batteries is small. This paper presents a decision-maker based
n a goal-seeking formulation that coordinates the discharge of a collection of batteries. This formulation allows us to use a simple battery model

nd simple decision-making algorithms. We present results from MATLAB simulations that demonstrate the performance of the decision-maker
hen energy is drawn out of the collection in three different discharge scenarios. The new decision-maker consistently improves the discharge

fficiency obtained using scheduling methods. Our results show that when the discharge is coordinated, the lifetime of the collection is extended.
2007 Elsevier B.V. All rights reserved.
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. Introduction

A battery, or electrochemical cell, is an important source
f energy that is widely used in applications such as medical
evices, hybrid-electric vehicles, communication systems and
pacecraft. Because the internal electrochemical processes of a
attery are complex and difficult to model, it is difficult to esti-
ate the state of charge (SoC) of a battery and the remaining

uration over which it can supply energy to a load [1]. Further,
ells or batteries are often used in series or parallel connected
ollections to satisfy the demands of the applications; it is even
ore difficult to estimate the remaining duration over which

uch a collection could supply energy to the load.
We consider the problem of discharging a collection of batter-

es in an efficient manner when the collection includes a number
f spare batteries. Each battery in the collection can be switched
n or switched out under the control of a decision-maker. We
ay that the discharge of a collection of batteries is coordinated,

hen the amount of remaining charge in each of the batteries at

he end of discharge is nearly equal. That is, given a collection,
1, b2, . . ., bn, of n batteries, if rc(bi) is the remaining charge

∗ Corresponding author. Tel.: +1 3309727646; fax: +1 3309726487.
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n battery bi, the discharge is coordinated when |rc(bi) − rc(bj)|
s small for 1 ≤ i, j ≤ n. When the discharge of a collection is
oordinated, the lifetime of the collection [2] is also extended.

We use a goal-seeking formulation as a basis to design a
ew decision-maker that coordinates the discharge of a collec-
ion of batteries. This formulation is based on the goal-seeking
aradigm proposed by Mesarovic and Takahara [3] which has
een used extensively to study large-scale and complex systems
4–6]. To the best of our knowledge, this formulation has not
een used as a basis for battery management. This formulation
llows us to use a simple model of a battery [7] and simple
ecision-making algorithms. We consider the variability in the
nique dynamic behavior of individual batteries as being caused
y two uncertainties. First, to account for variations introduced
y the manufacturing processes, we assume that the initial charge
nd capacity of a battery is uncertain. Second, to account for dif-
erences in the dynamic behavior, we assume that the parameters
f the battery models are uncertain. We define a metric called
ischarge efficiency that captures the lifetime over which a col-
ection supplies energy, the energy drawn out of the collection,
nd the amount of charge that remains in the collection at the

nd of discharge, i.e., when the collection is no longer able to
atisfy the requirements of the load. By using three typical dis-
harge scenarios in which loads draw energy from a collection of
atteries, we present results that demonstrate the discharge effi-

mailto:ssastry@uakron.edu
dx.doi.org/10.1016/j.jpowsour.2006.12.083
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of each battery as close as possible to the SoC of the other bat-
teries in the collection. Resistive shunts, flying capacitor and
energy converters have been used in the literature to equalize
charge during discharge.
S. Sastry et al. / Journal of Po

iency of the decision-maker in each scenario using MATLAB
imulations.

Consider an example scenario in which an application uses
atteries that can nominally provide 1.35 V and have an initial
harge of 0.86 Ah. If the application requires a minimum of
4 V, at least 11 batteries must be connected in series to satisfy
his demand. Let us say we choose to use 12 batteries in series
or this application; if these batteries are discharged by drawing
constant current of about 250 mA, then the collection could

upply energy to the load for about 190 min assuming that all
he batteries discharge uniformly. If there are 12 spare batteries
vailable, then all the 12 batteries could be replaced at the end
f discharge. If, however, there are only eight spare batteries
vailable, then the spares are not useful to the application.

By using a decision-maker that periodically selects 12 out of
he 20 batteries during discharge, in a round-robin manner, the
ifetime of the collection can be extended to about 320 min. The
ew decision-maker presented in this paper extends the lifetime
o about 430 min.

Section 2 presents the background. Section 3 describes the
imulation approach and presents baseline measurements that
re used to evaluate the performance of the new decision-
aker. Section 4 presents the goal-seeking paradigm and Section
presents a goal-seeking formulation of the coordination

roblem, the decision-maker based on this formulation and sim-
lation results. Finally, Section 6 presents our conclusions.

. Background

An accurate estimate of the SoC of a battery is critical for
decision-maker that coordinates discharge. SoC is a measure
f the remaining charge in a battery; if Qb,max represents the
aximum stored charge or capacity and Qb(t) represents the

harge in a battery b at time t, then

oCb(t) = Qb(t)

Qb,max
× 100%.

Assuming that the initial charge of a battery is known accu-
ately, we can integrate the current to estimate the SoC of the
attery as

oCb(t) = Qb(0) − ∫ t
0 ib(t) dt

Qb,max
× 100%.

This method is usually referred to as ampere–hour integration
r counting. However, this method unrealistically assumes that
he discharging process is 100% efficient and may yield inaccu-
ate estimates of the SoC. It also assumes an accurate knowledge
f the capacity Qb,max and of the initial charge Qb(0). Despite its
naccuracies, this method can be combined with other methods
o estimate the SoC.

The terminal voltage also gives some information about SoC
or many battery chemistries, with Lithium Ion being a notable

xception. Because terminal voltage is affected by load condi-
ions, a more accurate estimate of the SoC can be obtained from
n open-circuit voltage measurement [8]. It is necessary to allow
he battery to rest for a substantial duration of time to allow the
ources 166 (2007) 284–296 285

lectrochemical processes to reach equilibrium in order to get
n accurate open-circuit voltage measurement.

.1. Estimating battery lifetime

The duration of time over which a battery could supply energy
o a load is called the lifetime of the battery. When an application
ses a collection of batteries or cells, the idea of lifetime can be
xtended to the collection of batteries in the obvious manner. The
oC of a battery is a critical factor that influences the remain-

ng lifetime of a battery. Because of the inherent difficulties
n estimating SoC, it is also difficult to estimate the remaining
ifetime of a battery. Other factors that affect the lifetime of a
attery are depth-of-discharge, rate of discharge, current, tem-
erature, shock and vibrations. In addition, when one battery in
collection is supplying a disproportionate amount of energy

o compensate for some other weak battery, the lifetimes of the
ood batteries are decreased.

Fig. 1 shows the voltage profile of a NiMH battery through its
ifetime when it is being discharged at a constant current. This
gure shows that the voltage exhibits a sharp “knee” at the end
f discharge where the voltage drops quickly. By detecting the
nee a decision-maker could determine when a battery is about
o become completely discharged or needs to rest for recovery.

.2. Charge equalization

When a collection of batteries is used in an application, the
nique behavior of the individual batteries results in an unbal-
nced SoC across the collection. Several techniques have been
escribed in the literature to equalize the charge that is accepted
y each battery in a collection when rechargable batteries are
eing charged [9–13] where the objective is to maintain the SoC
Fig. 1. Discharge profile of NiMH battery.
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discharge process is terminated when the collection of batteries
can no longer supply a minimum voltage of 4 V to the load.
Fig. 2. System views

Consider a collection of batteries connected in series in which
here is a resistive shunt in parallel with every battery [9]. The
mount of current through the shunt resistor is proportional to the
oltage of its associated battery. Batteries that have higher SoC
ill tend to dissipate more power through the resistive shunts.
hile this approach is useful in a charging scenario, it has little

se in a discharging scenario.
Instead of dissipating power through resistive shunts the use

f a flying capacitor is a non-dissipative method in which the
bjective is to balance the voltage by moving energy from one
attery to another by using active voltage or current converter
lements [12]. A capacitor is connected to the collection of
atteries and this capacitor can be charged selectively from
ne of the batteries in the collection that has a higher volt-
ge. To select the source battery, a switch associated with
he battery can be closed. Once the capacitor is charged, it is
onnected in parallel with a battery that has a lower voltage.

hile little power is dissipated in this method of equalization,
t requires a large number of switches. The capacitor must be
arge and the switching currents must be high. Charge equaliza-
ion is only effective to the extent that voltage is correlated with
oC.

.3. Battery scheduling

When a collection includes spare batteries, charge equal-
zation effects may be achieved by using battery scheduling
echniques. Battery scheduling is a recent approach that has
een used to extend the lifetime of a collection of batteries
hen the collection includes a number of spare batteries [2].

decision-maker, which is hosted on a microcontroller [14,15],

elects batteries that must rest and discharge using strategies
iscussed in Section 2.5. To discuss such strategies and our new
ecision-maker, we first present a systems view. s
ollection of batteries.

.4. Systems view

As shown in Fig. 2, the collection of batteries and a micro-
ontroller that hosts the decision-maker can be viewed to be
t three levels. System Level 1 comprises a single battery.1 At
ystem Level 2, each battery is associated with a switch and a
iode that is useful to either connect a battery for discharge or
isconnect a battery for rest. At System Level 3, we consider
he microcontroller that hosts a decision-maker and all the inter-
acing hardware and software necessary to select batteries and
ake measurements at all the three system levels.
A decision-maker observes the operational condition of the

ollection of discharging batteries at discrete sampling instants
or time ticks), t1, t2, . . ., tf. At some time-tick, tf, the collection
f batteries would no longer be able to satisfy the demands of
he load. We refer to the interval of time between two successive
ime ticks as a time-slice, Ts = |ti − ti+1| for all 1 ≤ i ≤ f − 1. For
onvenience, we assume that the first instant of time is t1.

Given n batteries, in each time-slice the decision-maker must
dentify the m batteries that discharge and the k = n − m batteries
hat rest. The requirements of the application and the terminal
oltages of the batteries guide the choice of the number, m, of
atteries that must be discharged in each time-slice. We assume a
ypothetical application in which the load requires a minimum of
4 V. A collection of n = 20 NiMH batteries, each with a nominal
apacity of 1 Ah and nominal voltage of 1.3 V are assumed to
e available. When the terminal voltage of a battery is less than
.25 V, that battery is defined to be completely discharged. The
1 We refer to a battery pack, i.e., a fixed number of batteries packaged in a
ingle module, as a battery for convenience.
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.5. Selection strategies for battery scheduling

We consider three selection strategies for scheduling batter-
es. These are queued selection, sliding window selection and
andom selection.

In the queued selection strategy, the decision-maker, ini-
ially, selects batteries b1, b2, . . ., bm randomly for discharge.
n some time-slice (ti, ti+1), if one of the selected batteries is
ompletely discharged, it is replaced by one of the k spare bat-
eries, by disconnecting the discharged battery and connecting
he spare batteries in some pre-defined order. This strategy is
imple and is commonly used in portable devices [2]. Because
atteries display considerable variation in lifetime, it is not pos-
ible to predict when a spare battery will need to be introduced.
t is necessary to estimate the state of discharge of each bat-
ery by monitoring the voltage or counting the ampere–hours.
ven if we assume that the individual batteries will discharge
niformly, this approach will not extend the lifetime of the
ollection when k < m, and more than k batteries are com-
letely discharged. Such a state of termination is not desirable
ecause there would be at least k batteries that are not fully
ischarged.

In the sliding window selection strategy the decision-maker
elects batteries bi, bi+1, . . ., bi+(m−1) to discharge in time-slice
ti, ti+i) while the remaining batteries rest. The discharge process
erminates when the collection can no longer supply minimum
oltage to the load. This strategy ensures that all the n batteries in
he collection are used at about the same level. However, there is
o means to compensate for variability in the individual batteries
n this strategy.

In the random selection strategy, the decision-maker ran-
omly selects m batteries, in each time-slice, to discharge while
he remaining k batteries rest. This strategy typically utilizes
he available batteries better than the queued selection strategy;
owever, the amount of charge remaining in the collection of n
atteries at the end of discharge cannot be determined a priori
ecause of the random selections.

. Simulation approach

This section presents the battery model, methods used to esti-
ate charge, representations that capture the unique behavior of

ndividual batteries, discharge scenarios, and the discharge effi-
iency metric. We then present an application scenario that is
he basis for the results reported in this paper. Using the battery

odel described here, we establish baseline measures to com-
are the performance of the decision-maker presented in Section
.

.1. Battery model
We selected a commonly used AA NiMH battery as a rep-
esentative example of batteries used in applications. A model
or such a battery was reported in [7]. This model uses a linear-
n-the-parameters approximation to the electrode equation. The
erminal voltage is expressed as

a
w
w
b

s

ources 166 (2007) 284–296 287

(t) = k1 − k2 × i(t) + k3 ×Qd(t) + k4 × log

(
Q(t)

Qmax

)

−k5 × log

(
Qmax −Q(t)

Qmax

)
, (1)

here t represents time (min), v(t) the terminal voltage (V) at
ime t, i(t) the current (A) at time t, Qmax the maximum capacity
Ah), Q(t) the stored charge (Ah), Qd(t) the diffusing charge
Ah), and k1, . . ., k5 are the parameters that are obtained from a
attery discharge curve.

Using a 1 Ah rechargeable NiMH cell with a degraded capac-
ty of 0.86 Ah, the nominal values for these parameters are
1 = 1.33 V, k2 = −0.12 V A−1, k3 = 20 V Ah−1, k4 = 0.015 V and
5 = −0.013 V.

Using the model in [7], the stored charge and diffusing charge
re calculated as

dQ(t)

dt
= 1

60
× i(t) − 4.83 × 10−6 ×Q(t),

nd

dQd(t)

dt
= −0.35 ×Qd(t) − 0.001126 × i(t).

.2. Unique behavior of batteries

The initial SoC and the dynamic behavior of each battery
re unique and difficult to characterize. The initial SoC of each
attery varies significantly and critically affects the behavior
f the battery. To capture this phenomenon in the simulation,
e randomly vary the initial SoC in the battery models within
2% of 0.86 Ah. Thus, the initial SoC of each battery in the n
atteries we consider are randomly chosen to be between 0.58
nd 1.135 Ah.

To capture the differences in the dynamic behavior of each
attery in the collection, we randomly vary the values of the
arameters ki within 10% of the nominal values presented in the
receding section.

.3. Estimating charge

We use a method that combines open-circuit measurement
nd ampere–hour counting to estimate SoC. Using the NiMH
attery model, we simulated the discharge of a single battery.
e approximated the relationship between Voc (in V) and SoC

s

oC = (1.5265 − 3.4482 × Voc + 2.5949 × V 2
oc

−0.6506 × V 3
oc) × 106%. (2)

Eq. (2) is used to obtain the starting point Q̂max for the
mpere–hour counting method for estimating SoC. In addition,
e used a table based approach to estimate the SoC where

e approximated the SoC based on the terminal voltage of the
attery.

The decision-maker acquires two open-circuit voltage mea-
urements, Voc-1 and Voc-2, for each battery in the collection.
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collection supplies the voltage required by the load for 270 min;
779.83 Wh energy was drawn out and the remaining charge is
2.2 Ah. When the same 12 batteries were discharged at 500 mA,
the collection supplied the voltage required by the application for
88 S. Sastry et al. / Journal of Po

or each battery, Voc-1 is measured before the discharge process
egins and Voc-2 is measured during the first time the battery
ests. The SoC corresponding to these two measurements is
btained from Eq. (2) as SoC1 and SoC2. The ampere–hours
rawn out of these batteries between the times at which these
easurements, Qout, was estimated using the ampere–hour

ounting method. These measurements allowed us to estimate
he maximum capacity as

ˆ max = Qout

SoC1 − SoC2
× 100%. (3)

.4. Discharge scenarios and efficiency

Because of the diversity in battery applications, we use three
ischarge scenarios, namely constant current discharge (CCD),
onstant power discharge (CPD), and randomly varying current
ischarge (RVCD), to validate the decision-makers. In CCD,
onstant current is drawn out of the collection of batteries when
upplying energy to the load. In CPD, power delivered to the
oad is maintained constant; this is necessary for example in
n application that uses switching voltage regulators. When the
oltage supplied by the batteries drops, current is increased to
aintain constant power. In RVCD, we assumed that the current

rawn out of the collection varies at random within 10% of the
ominal value used for CPD—to represent applications where
he load may change at random. For example, in a space mission,
ertain experiments can be turned on or off optionally. In all these
ischarge scenarios, the batteries supply energy to the load until
hey can no longer satisfy the requirements of the load.

Clearly, the remaining lifetime, trem, of a colletion of batter-
es, depends on the discharge scenario. In CCD, the remaining
ime is approximately

rem = Qrem

I

here

rem = Qmax −
∫ t

0
i(t) dt.

In CPD,

rem =
∫ Qrem

0 v(Q) dQ

P

here P is the power maintained at the load. It is difficult to
stimate the remaining time in RVCD.

Any decision-maker discharging a collection of batteries
ust consider the lifetime of the collection, the energy drawn

ut of the collection, and the utilized fraction of the total charge
apacity of the collection. Because the importance of these effi-
iency metrics differs from one application to another, we define
ischarge efficiency (DE) as
E = c1 × Lifetime

MPL
+ c2 × EnergyOut

MPE
+ c3

×UsedCapacity

Qmax
, (4)
ources 166 (2007) 284–296

here Lifetime is the lifetime over which the collection supplies
nergy to the load, EnergyOut the energy that is drawn out of
he collection, UsedCapacity the amount of available capacity
hat is used, MPL the maximum possible lifetime that could be
chieved, and MPE is the maximum possible energy that could
e drawn out.

ci > 0 and
∑

ici = 1. In this paper, we use the values
1 = c2 = 0.25 and c3 = 0.5. MPL, MPE and Qmax are obtained
rom manufacturer specifications.

.5. Baseline measurements

We now use the battery model to simulate a collection of
atteries in a variety of scenarios. These results are established
s a baseline to evaluate the performance of the decision-maker
resented in Section 5.

Each simulation is executed with Ts = 1 min. For CCD, the
ischarging current is chosen to be 250 mA. In CPD, the fixed
ower maintained is 3.75 W. To maintain constant power, the
urrent through the battery is increased as the battery discharges
nd the voltage decreases. For RVCD, we select the current to
ary within 10% of a nominal 238 mA load current.

All the results presented in the figures are based on a single
xecution of the simulation and are intended to be illustrative.
he results shown in the accompanying tables represent average
alues obtained from 10 executions of each simulation.

We first simulated a collection of 12 batteries in the three dis-
harge scenarios. Fig. 3 shows the stored charge versus time of
he collection of batteries in CCD. In this simulation the collec-
ion supplies the voltage required by the load for about 190 min.

total of 718.97 Wh energy was drawn out of the collection
nd the charge remaining in the collection is 2.8 Ah. Fig. 4
hows the effect of changing the discharge current in this base-
ine CCD scenario. When the discharge current is 185 mA, the
Fig. 3. Stored charge vs. time for baseline in CCD 250 mA.
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Fig. 4. Effects of discharge current on baseli

Table 1
Baseline measurements for 12 batteries

Scenario Lifetime (min) Energy out (Wh) Remaining charge (Ah)

CCD 189.3 12.191 2.461
C
R

2
r
t
o

i
d
a
e

o
s
c

t
t
c
b
u
e
e

o
e
3
a
r

o
s
c
s

PD 195.9 12.216 2.457
VCD 214.8 12.621 2.316

5 min; the energy drawn out is 189.48 Wh and 9.24 Ah of charge
emained in the collection. These variations are consistent with
he expectation that discharge current impacts the performance
f a collection of batteries.

Table 1 shows the lifetime, energy drawn out, and the remain-
ng charge in the collection of 12 batteries in all the three
ischarge scenarios. As noted earlier, the values in this table are
verage values obtained after 10 executions of the simulation in
ach scenario when the discharge current is 250 mA.

Fig. 5 shows the stored charge versus time of the collection

f batteries in CCD when discharged using the queued selection
trategy. For this simulation, Ts = 1 min and the discharging pro-
ess was terminated when the collection could no longer supply

Fig. 5. Stored charge vs. time for queued selection in CCD 250 mA.

t
c
1

ne CCD. (a) 185 mA and (b) 500 mA.

he minimum voltage required by the load. There are several bat-
eries in the collection that have remaining charge, and yet, this
harge is not sufficient to supply the minimum voltage required
y the load. Despite this approach being the most commonly
sed one in portable electronic devices, note that the time is not
xtended significantly consistent with the observation by Benini
t al. [2].

Fig. 6 shows the stored charge versus time of the collection
f batteries in CCD when the batteries are selected at random in
ach time-slice. Notice that the lifetime is extended to about
11 min. Unlike the queued selection strategy, all the avail-
ble batteries are used during discharge. The difference in the
emaining charge of individual batteries is, however, large.

Fig. 7 shows the stored charge versus time the collection
f batteries in CCD. Noticed that the lifetime is extended con-
iderably to about 330 min. The difference in the remaining
harge of individual batteries, however, remains wide. Fig. 8
hows that when the discharge current is reduced to 185 mA,

he lifetime is increased to about 460 min. When the discharge
urrent is increased to 500 mA, the lifetime reduces to about
60 min.

Fig. 6. Stored charge vs. time for random selection in CCD 250 mA.
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Table 2
Effects of discharge currents—sliding window selection

Scenario Lifetime (min) Energy (Wh) Remaining capacity (Ah)

CCD
185 mA 466.37 22.419 2.508
250 mA 345.83 22.26 2.493
500 mA 168.1 20.896 3.164

CPD
185 mA 354.42 22.143 2.783
250 mA 353.46 22.085 2.515
500 mA 353.9 22.152 2.718

RVCD
185 mA 528.56 22.911 2.295

s
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u

ig. 7. Stored charge vs. time for sliding window selection in CCD 250 mA.

By comparing these results to the baseline values shown in
igs. 3 and 4, we note that the addition of spares improves the
erformance of the collection of batteries. Because the sliding
indow selection strategy performs better than queued selec-

ion and random selection, we present how the sliding window
election strategy performs when the discharge current changes
n Table 2.

. Goal-seeking paradigm

The goal-seeking paradigm [3] is an approach to modeling
nd describing systems that provides an alternative to the well-
nown state-transition paradigm. The state-transition paradigm
s based on the assumption that the states of a system, Z, are
recisely describable. The dynamics of the system are described
y a State-Transition function
1 : Z⊗X → Z

here X is a set of control inputs or disturbances that affect the
ystem in any given time-slice. The outputs produced by the

p
r
r
p

Fig. 8. Effects of discharge current on sliding w
250 mA 384.16 22.332 2.538
500 mA 184.16 20.749 3.374

ystem at any time-tick are determined by the mapping

2 : Z → Ψ,

here Ψ is the set of system outputs.
In the goal-seeking paradigm, there is no attempt to describe

he system states and hence the system model is necessarily
implified relative to what one may expect when using a state-
ransition paradigm. Instead, the decision-making process is
ormulated using the following sets and functions. There is a
et of Alternate Actions, Π, from which the decision-maker
an select actions. Anticipated system perturbations and dis-
urbances are represented as a set of Uncertainties, Δ. If a
iven perturbation δi ∈Δ occurs, it would impact the success
f a selected action. Consequences are outputs that are pro-
uced by the system; the set of Consequences, Ψ , includes
ll outcomes that may result from the implementation of some
ction. The decision-maker uses a function called Reflection,Ξ:
⊗Δ→Ψ , as its view of the environment. Suppose that the

ecision-maker selects an action π1 ∈Π; the decision-maker
ses Ξ to estimate the consequence, ψ1 ∈Ψ that π1 would

roduce if a given perturbation occurs. An Evaluation Set, Λ,
epresents a Performance Scale that is used to compare the
esults of alternate actions according to an Evaluation Map-
ing, Ω: Ψ ⊗Π→Λ. That is, if the decision-maker has the

indow CCD. (a) 185 mA and (b) 500 mA.
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ption to select one of two actions π1, π2 ∈Π, and these actions
re expected to result in consequencesψ1,ψ2 ∈Ψ , respectively,
hen the decision-maker uses values ofΛ as the metric to deter-

ine whether one of the two actions is preferred over the other.
is also used to evaluate the actual measured output of the sys-

em. A Tolerance Function, Γ : Π ⊗Ψ →Λ provides a bound
n how much the performance can vary before being considered
s unsatisfactory. Using these artifacts and transformations, the
ask of the decision-maker may be stated as

Continue to select an action π ∈Π as long as the outcome
is within tolerance limits, i.e., Ω(π, ψ) >Γ (π, ψ), for any
possible perturbation δ∈Δ.

The goal-seeking approach aims to find a satisfying solution
hat is within an acceptable tolerance limit. Such an approach
s useful when it is not possible, or desirable, to construct a
recise model of a system. Consequently, in this paradigm, the
ontrol of a complex system does not require a complex decision-
aker. The next section presents an application of this approach

o coordinate the discharge of a collection of batteries.

. Discharge coordination

A simple view of the interaction between the decision-maker
nd the collection of batteries is depicted in Fig. 9. The decision-
aker maintains the performance of the collection of batteries
ithin established limits by selecting alternate actions from Π,
hile considering only its simple view of the environment, Ξ.
hen the batteries are discharging, the terminal voltage of the

ollection of batteries, Vt, is used as a measure of the perfor-
ance and evaluated using the evaluation mapping,Ω. As long

s the Vt is within an acceptable range, as indicated by Γ , the
ecision-maker does not select new alternate actions. Whenever
he performance is outside the acceptable range, the decision-
aker selects new alternate actions to maintain the performance
ithin the acceptable range. The discharge process is terminated
hen the batteries can no longer supply the minimum voltage

equired by the load.

Fig. 9. Simple view of goal-seeking interactions.
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In the remainder of this section, we present a goal-seeking
ormulation of the problem of coordinating battery discharge.
he results demonstrate the improved performance of the
ecision-maker relative to the performance of scheduling meth-
ds discussed in Section 2.5.

.1. Specifying goal-seeking artifacts

The principal objectives for the decision-maker are to extend
he lifetime of the collection of batteries and improve the dis-
harge efficiency. The decision-maker must select actions that
nable the collection of batteries to maintain the terminal volt-
ge of the collection at System Level 3 within a tolerance limit
pecified for the load.

.1.1. Alternate actions, Π
Alternate actions represent the choices that are available to the

ecision-maker. The decision-maker must, in each time-slice,
etermine whether a given battery bi must discharge or rest in
he following time-slice. Given that the collection has a total of

batteries, it suffices to use a binary vector, bv, of n elements,
here bv(i) = 1 if battery bi is selected for discharge and bv(i) = 0
therwise. If we denote the set of all possible binary vectors of n
lements as the set Π, then the decision-maker must select one
ember of this set in each time-slice so that the selected batteries
ould discharge in the following time-slice. The selection of

n element in Π is determined by other several higher-level
ecisions discussed in the following paragraphs.

The number of batteries that are discharging, m, is directly
elated to the terminal voltage Vt that can be delivered by the
ollection of batteries. The decision-maker selects m and k in
ach time-slice from the set

1 = {(m, k) : m ≤ n, k ≤ n,m+ k = n}.
The choice of bv ∈Π is restricted by the choice of (m,

) ∈Π1.
We represent the choice of battery selection strategies avail-

ble to the decision-maker as

2 = {QS,RS,SW,GS}
here QS represents queued selection, RS represents random

election, SW represents sliding window and GS represents
oC selection. The first three strategies have been discussed

n Section 2.5 and SoC selection is discussed in Section 5.2.
he decision-maker can change the selection strategy from one
ember of Π2 to another, at a time-tick that is chosen dynam-

cally by the decision-maker based on its observations. Such a
ime-tick can be selected from the set

3 = {1, 2, . . . , f }.
The set

4 = {1, 10, 15}

epresents the choices available for the duration of the time-slice
s (min). Finally, the set

5 = {AhM,OCVM}
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here AhM represents ampere–hour measurement and OCVM
epresents open-circuit voltage measurement. These are two
ethods for estimating SoC that the decision-maker uses.
Thus, the decision-maker’s choice of bv ∈Π is determined

y the member in the set

1 ⊗Π2 ⊗Π3 ⊗Π4 ⊗Π5

hat is selected by the decision-maker. In our simulation, we
elected a time-tick fromΠ3 only once. The choice of a member
n Π2 was also made once at the beginning of the discharge
nd changed once during discharge. In a general setting, these
hoices can be made by a decision-maker more than once.

.1.2. Uncertainties, Δ
We represent the set of uncertainties as

= Δ1 ⊗Δ2.

Δ1 represents the set of perturbations that could occur to
ause the unique behavior of individual batteries. We represent
uch perturbations by varying the parameters, k1, . . ., k5, of the
attery model shown in Eq. (1) randomly within 10% of the
ominal values. Thus, each member δ1 ∈Δ represents a partic-
lar set of values for the parameters k1, . . ., k5. Such variation
n the parameters affect the stored charge, life time and voltage
f each battery. In our simulation, the decision-maker does not
onsider members of Δ1 before making decisions—the effects
f these variations manifest as different dynamic behaviors of
ndividual batteries.
Δ2 represents the perturbations that occur during battery

anufacturing. We aggregate these variations as a difference
n the initial charge of the battery. To represent such variations,
e vary the initial charge of an individual battery randomly by
2% of 0.86 Ah.

.1.3. Consequences, Ψ
The consequences represent the terminal voltage of the

ollection of batteries. When selecting actions for the next
ime-slice, the decision-maker computes an expected conse-
uence using the reflection functionΞ that is defined in Section
.1.4. When the batteries in the collection are discharging, the
ecision-maker measures the terminal voltage Vt at System
evel 3 (Fig. 2). Clearly, if an action is selected and some pertur-
ation occurs, the measured voltage of the collection of batteries
ould reflect the effect of the perturbation.

.1.4. Reflection, Ξ
The reflection function, Ξ: Π ⊗Δ→Ψ , represents the

ecision-maker’s view of the environment. To emphasize that the
onsequence identified by the reflection is an estimated value,

ˆ 2
e use ψ to denote an estimated consequence. Whenever the
ecision-maker has to select among a set of actions, π ∈Π, it
sesΞ to estimate the consequence if a given perturbation, δ∈Δ,
ccurs.

2 The actual consequence ψ, i.e., the measured value Vt, is not necessarily the
ame as the estimated value, ψ̂.

b
a
t
s
t

ources 166 (2007) 284–296

The expected consequence is computed based on the
ecision-maker accounting for some uncertainty, i.e., ψ̂ =
(π, δ̂). If Vavg represents the average voltage that can be deliv-

red by a selected battery, then a simple function that can be
sed for Ξ is

ˆ
m,k(ti) = Vavg(ti−1) ×m.

To account for uncertainties, we adjust Vavg by the estimated
oC in the selected batteries as

ˆ
m,k(ti) =

n∑
j=1

Vavg(ti−1) × SoCtij × bv(j)

SoCti−1
avg

here bv(j) represents the jth element of the choiceΠ1; bv(j) = 1
f the corresponding battery is discharging and 0 otherwise.
oCtij is the estimated SoC for battery bj at time-tick ti. In our
imulation, this is estimated by varying parameters ki of the bat-
ery model randomly by 10%; and the open-circuit voltage is
omputed using the battery model (Eq. (1)). If voltage from the
odel is less than VEoD = 1.25 V, SoCtij for bj is set to 0 to reflect

hat the battery is completely discharged.

.1.5. Evaluation Set, Λ
The Evaluation Set (or performance scale) is a metric used

o compare outcomes of selected actions. This scale helps the
ecision-maker to determine which alternate action is preferable
ver other choices. We used the closed interval [0, 1] on the real
ine as the scale—with 0 representing an undesirable choice and
representing the most desirable choice.

.1.6. Evaluation mapping, Ω
The evaluation mapping is a function that maps a selected

ction and its consequence (estimated or measured) to a value,
i ∈Λ, on the performance scale, i.e., Ω: Π ⊗Ψ →Λ. The
ecision-maker uses this mapping both to select alternate actions
sing the estimated consequences and to evaluate the conse-
uence of selected actions based on measured values.

When selecting batteries for discharge, the expected conse-
uence should be close to the minimum voltage Vmin = 14 V,
therwise, there is needless dissipation of energy. Similarly, we
ould like the measured consequence also to be close to Vmin.
e captured these requirements as

(π, ψ̃m,k)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

exp−(ψ̃m,k−Vmin)

× 1

m
×

n∑
j=1

SoCtij × bv(j), when ψ̃m,k ≥ Vmin

0, when ψ̃m,k < Vmin

.

(5)

ψ̃m,k represents the estimated consequence ψ̂m,k when Ω is
eing used by the decision-maker to select actions. When evalu-

ting the measured consequence, ψ̃m,k represents Vt. In addition
o representing the requirement that the selected batteries can
upply the voltage desired, the evaluation mapping also ensures
hat only the smallest necessary number of batteries is selected.
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Table 3
Performance of discharging methods at 250 mA

Scenario Lifetime (min) Energy (Wh) Remaining capacity (Ah)

Queued selection
CCD 231.9 14.909 8.335
CPD 240.5 15.025 8.257
RVCD 259.3 15.196 8.114

Random selection
CCD 337.53 21.801 3.103
CPD 352.29 22.012 2.938
RVCD 375.5 22.128 3.303

Sliding window selection
CCD 345.83 22.261 2.428
CPD 353.46 22.09 2.514
RVCD 384.16 22.332 2.538

Goal-seeking
CCD 425.7 25.618 0.199

S
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1

5

t
o
observed under the sliding window selection strategy in Fig. 7.
In addition, note that the remaining charge in the collection is
lower than the remaining charge observed in sliding window
selection. Fig. 12 shows that the goal-seeking approach per-
Fig. 10. Detailed view of goal-seeking interactions.

.1.7. Tolerance function, Γ
The tolerance function, Γ : Π ⊗Ψ →Λ, is a bound on the

mount of variation that can be tolerated in performance before
solution is considered as unsatisfactory. During discharge,
e required Vt > 14 V, i.e., we required Ω(π, ψ̃m,k) > 0 With
min = 14 V.

.2. Execution of the decision-maker

Fig. 10 shows the interactions between the collection of bat-
eries and a decision-maker that coordinates its discharge.

In our simulations, the discharge process is initiated by select-
ng batteries using the sliding window strategy (in Π3) and a
ime-slice duration of Ts = 10 min (in Π5). When the batteries
re discharging, the decision-maker measures the terminal volt-
ge of the collection at System Level 3. This measurement is
sed to calculate an estimated average terminal voltage of each
attery that is discharging; when this average value drops below
.275 V, the decision-maker changes the selection strategy at a
ime-tick (in Π4) to SoC selection with Ts = 1 min.

Since the estimated SoC is a critical factor of coordinating the
ischarge of a collection of batteries, we explored four different
ethods to estimate SoC. To support the SoC selection strategy,

he terminal voltage is measured at System Level 1 for each bat-
ery that is discharging. We first assumed that the rate of change
f terminal voltage at System Level 1 is correlated to the SoC of
he battery and used this rate as a guide to select batteries with
maller rates of change. Second, we used a pre-constructed esti-
ation table that mapped an open-circuit voltage measurement

o SoC. Third, we used both a linear relationship between Voc
nd SoC and the cubic polynomial relationship (Eq. (2)). Finally,
e combined the method of estimating charge discussed in Sec-

ion 3.3 and the method of ampere–hour counting to estimate
he SoC. One can argue that because ampere–hour counting is
sed, this is approach uses the concept of “state”. This use of
state” is limited to the purpose of estimating whether or not a
articular battery can be discharged in the next time-tick. In this
pproach, we have not attempted to construct a state-transition

odel for the collection of batteries.
The collection of batteries were discharged in all the three

cenarios discussed for selection strategies in Section 2.5. We
bserved that in CCD and CPD, it was most effective to estimate
CPD 411.0 25.683 0.169
RVCD 472.4 25.685 0.561

oC using a combination of charge estimation and ampere–hour
ounting where Voc was mapped to SoC using the cubic polyno-
ial in Eq. (2). For RVCD, we observed that the SoC estimation

ased on a pre-constructed table was more effective than an
stimation using the cubic polynomial.

As in Section 2.5, the results presented in the graphs in this
ection are based on a single execution of the simulation. Results
resented in Tables 1 and 3 are the average values obtained from
0 executions of the simulation.

.3. Simulation results

Fig. 11 shows the stored charge versus time of the collec-
ion of batteries in CCD. Note that the lifetime of the collection
f batteries has been significantly extended over the lifetime
Fig. 11. Stored charge vs. time in CCD 250 mA.
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nt in CCD. (a) 185 mA and (b) 500 mA.
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Fig. 14. Stored charge vs. time in RVCD using cubic polynomial 250 mA.
Fig. 12. Effects of discharge curre

orms as expected when the discharge current is changed to 185
r 500 mA.

Fig. 13 shows stored charge versus time of the collection of
atteries in CPD. Once again, the decision-maker extends the
ifetime and reduces remaining charge when compared to the
erformance of selection strategies that is shown in Table 3.

Fig. 14 shows stored charge versus time in RVCD when the
oC was estimated using the cubic polynomial. Fig. 15 shows
similar relationship when the decision-maker used an estima-

ion table to estimate SoC. It may be noticed that the remaining
harge at the end of discharge is reduced considerably when an
stimation table is used in RVCD.

.4. Discussion

Table 1 shows the baseline performance for a collection of
2 batteries in which there are no spares. This baseline allows
s to recognize that when we discharge a collection of 20 bat-

eries in which 8 batteries are available as spare batteries, the
erformance of the collection is significantly improved. Table 3
hows the performance of all the methods in the three discharge
cenarios. It can be noticed that the decision-maker based on

Fig. 13. Stored charge vs. time in CPD 250 mA. Fig. 15. Stored charge vs. time in RVCD using estimation tables 250 mA.
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Fig. 16. Discharge

Table 4
Effects of discharge currents—goal-seeking

Scenario Lifetime (min) Energy (Wh) Remaining capacity (Ah)

CCE
185 mA 572.8 22.485 0.194
250 mA 425.7 25.618 0.199
500 mA 193.2 23.805 0.764

CPD
185 mA 408.9 25.508 0.145
250 mA 411.0 25.683 0.169
500 mA 407.5 25.475 0.167

RVCD—polynomial
185 mA 554.31 22.415 2.997
250 mA 410.0 22.499 3.065
500 mA 201.5 22.290 2.592

RVCD—estimation table
185 mA 632.90 22.272 0.708
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250 mA 472.40 25.685 0.561
500 mA 220.40 24.185 1.890

he goal-seeking paradigm performs better than all the other
ethods in all the discharge scenarios.
Table 4 shows the performance of the new decision-maker

hen the discharge current varies. Comparing the values in
his table with the ones in Table 2 we can see that the new
ecision-maker based on the goal-seeking paradigm consistently
erforms better than the sliding window selection strategy.

We defined the discharge efficiency metric to capture how
ffectively the decision-makers could utilize the available energy

hile extending lifetime. Table 5 presents the discharge effi-

iency of all the methods discussed in this paper when the
oefficients were selected to emphasize that it is important

able 5
ischarge efficiency

election method CCD CPD RVCD

ueued selection 0.577 0.576 0.582
andom selection 0.805 0.812 0.805
liding window 0.832 0.834 0.830
oal-seeking 0.943 0.931 0.905
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efficiency.

o minimize the remaining capacity. It may be noted that the
ecision-maker based on the goal-seeking paradigm improves
he efficiency consistently.

The principle of using redundancy to extend lifetime and
fficiency is not new in engineering. However, since the battery
cheduling methods [2] and the decision-maker based on the
oal-seeking formulation are both based on this principle, it is
mportant to compare how well the two approaches utilize the
vailable redundancy.

Fig. 16 shows how the discharge efficiency varies when the
umber of spare batteries available is changed. It is seen that the
ischarge efficiency when using queued selection (QS) increases
nly when certain number of spare batteries are available. This
eflects the fact that this strategy is effective only when the
umber of spare batteries is at least as many as the minimum
umber of batteries that are required to meet the voltage demands
f the load. The discharge efficiency of sliding window (SW)
election is consistent and steady; in contrast for the random
election (RS) we see that the efficiency varies. This variation
s because of wide variance of the remaining charge in the col-
ection at the end of discharge. The new decision-maker that is
ased on the goal-seeking paradigm (GS) performs consistently
etter than all the other methods when the utilization of avail-
ble energy in the collection is important; i.e., c1 = c2 = 0.25 and
3 = 0.5. The discharge efficiency of the decision-maker based
n the goal-seeking paradigm increases from 0.93 to 0.96 when
he number of spare batteries changes from two to four. Thus,
ur decision-maker is able to better utilize the available spare
atteries, especially when the number of spare batteries is low.

. Conclusions

We developed a goal-seeking formulation for the problem of
oordinating the discharge of a collection of batteries motivated
y the need to cope with the uncertainties that are inherent in
atteries. We used this formulation to design a new decision-
aker and evaluated the performance of the decision-maker

hile discharging a collection of batteries in constant current,

onstant power and randomly varying current discharge sce-
arios. To evaluate the performance of the decision-maker, we
sed lifetime, energy supplied and remaining capacity at the
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nd of discharge as factors and defined a metric called discharge
fficiency that combined all these factors. In all three discharge
cenarios, the new decision-maker, by making use of the individ-
al battery voltage measurements, consistently achieves better
ischarge efficiency than the scheduling methods reported in the
iterature.

Based on these results, we are encouraged to consider design-
ng new decision-makers that optimally charge a collection of
atteries in the presence of uncertainties.
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